Advertisements
Advertisements
प्रश्न
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
उत्तर
q(p2 – 1) = (sec A + cosec A) [(sin A + cos A)2 – 1]
= (sec A + cosec A) [(sin2 A + cos2 A + 2 sin A cos A) – 1]
= (sec A + cosec A) [(1 + 2 sin A cos A) – 1]
= (sec A + cosec A) (2 sin A cos A)
= 2 sin A + 2 cos A
= 2p
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ