हिंदी

Prove the Following Trigonometric Identities. (Cot a - Cos A)/(Cot a + Cos A) = (Cosec a - 1)/(Cosec a + 1) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`

उत्तर

In the given question, we need to prove `(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`

Here, we will first solve the LHS.

Now using `cot theta = (cos theta)/(sin theta)`, we get

`(cot A - cos A)/(cot A + cos A) = (cos A/sin A - cos A)/(cos A/sin A + cos A)`

`= ((cos A - cos Asin A)/sin A)/((cos A + cos A sin A)/sin A)`

On further solving by taking the reciprocal of the denominator, we get,

`((cos A - cos Asin A)/sin A)/((cos A + cos Asin A)/sin A) = ((cos A - cos AsinA)/sin A) (sin A/(cos A + cos A sin A))`

`= (cos A - cos AsinA)/(cos A + cos Asin A)`

Now, taking `cos A sin A` common from both the numerator and the denominator, we get

`(cos A - cos A sin A)/(cos A + cos Asin A) = (cos A sin A (1/sin A -1 ))/(cos A sin A (1/sin A + 1))`

`= ((1/sin A - 1))/((1/sin A + 1))`

`= (cosec A - 1)/(cosec A + 1)`      `("using"  1/sin theta = cosec theta)`

Hence proved

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 46 | पृष्ठ ४५

संबंधित प्रश्न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


If `secθ = 25/7 ` then find tanθ.


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×