Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
उत्तर
In the given question, we need to prove `(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Here, we will first solve the LHS.
Now using `cot theta = (cos theta)/(sin theta)`, we get
`(cot A - cos A)/(cot A + cos A) = (cos A/sin A - cos A)/(cos A/sin A + cos A)`
`= ((cos A - cos Asin A)/sin A)/((cos A + cos A sin A)/sin A)`
On further solving by taking the reciprocal of the denominator, we get,
`((cos A - cos Asin A)/sin A)/((cos A + cos Asin A)/sin A) = ((cos A - cos AsinA)/sin A) (sin A/(cos A + cos A sin A))`
`= (cos A - cos AsinA)/(cos A + cos Asin A)`
Now, taking `cos A sin A` common from both the numerator and the denominator, we get
`(cos A - cos A sin A)/(cos A + cos Asin A) = (cos A sin A (1/sin A -1 ))/(cos A sin A (1/sin A + 1))`
`= ((1/sin A - 1))/((1/sin A + 1))`
`= (cosec A - 1)/(cosec A + 1)` `("using" 1/sin theta = cosec theta)`
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If `secθ = 25/7 ` then find tanθ.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.