हिंदी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: sinθ-2sin3θ2cos3θ-cosθ=tanθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`

Prove that `(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`

योग

उत्तर

L.H.S = `(sin theta-2sin^3theta)/(2cos^3theta -costheta)`

= `(sintheta(1-sin^2theta))/(costheta(2cos^2theta-1))`

= `(sinthetaxx(1-2sin^2theta))/(costhetaxx{2(1-sin^2theta)-1})`

= `(sin thetaxx(1-2sin^2theta))/(costhetaxx(1-2sin^2theta))`

= `tantheta` 

= R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.07 | पृष्ठ १९४

संबंधित प्रश्न

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Express the ratios cos A, tan A and sec A in terms of sin A.


 Evaluate sin25° cos65° + cos25° sin65°


`(1+tan^2A)/(1+cot^2A)` = ______.


The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


`(1-cos^2theta) sec^2 theta = tan^2 theta`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


The value of sin2 29° + sin2 61° is


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

sec 60° = ?


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Prove that sin4A – cos4A = 1 – 2cos2A


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


If 2sin2θ – cos2θ = 2, then find the value of θ.


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×