हिंदी

The Value of Sin2 29° + Sin2 61° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin2 29° + sin2 61° is

विकल्प

  • 1

  • 0

  •  2 sin2 29°

  • 2 cos2 61° 

     

MCQ

उत्तर

The given expression is `sin^29°+sin^2 61°`

`sin^2 29°+sin^2 61°`. 

=` sin^2 29°+(sin 61°)^2` 

`= sin^2 29°+{sin(90°-29°)}^2`

`=sin^2 29°+(cos 29°)^2` 

`= sin^2 29°+cos^2°29°` 

`= 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 18 | पृष्ठ ५७

संबंधित प्रश्न

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If `sin theta = x , " write the value of cot "theta .`


If tanθ `= 3/4` then find the value of secθ.


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×