Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
उत्तर
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
`sin(50^circ + θ) = cos[90^circ - (50^circ + θ)] = cos(40^circ - θ)`
`sin(50^circ + θ) - cos(40^circ - θ)`
= `cos(40^circ - θ) - cos(40^circ - θ)`
= 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`