Advertisements
Advertisements
प्रश्न
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
उत्तर
We have ` ( sec theta + tan theta ) =m ....(i)`
Again ,` ( sec theta - tan theta ) = n .....(ii)`
Now, multiplying (i) and (ii), we get:
`(sec theta + tan theta ) xx ( sec theta - tan theta ) = mn`
` => sec^2 theta - tan^2 theta = mn `
`= > 1= mn [∵ sec^2 theta - tan^2 theta = 1 ]`
∴ mn = 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
sin2θ + sin2(90 – θ) = ?
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.