हिंदी

Prove that sinθsecθ+1+sinθsecθ-1 = 2 cot θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ

योग

उत्तर

L.H.S = `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` 

= `sintheta/(1/costheta + 1) + sintheta/(1/costheta - 1`

= `sintheta/((1 + costheta)/costheta) + sintheta/((1 - costheta)/(costheta))`

= `(sintheta costheta)/(1 + costheta) + (sintheta costheta)/(1 - costheta)`

= `sin theta costheta (1 /(1 + costheta) + 1/(1 -  costheta))`

= `sintheta costheta [(1 - costheta + 1 + costheta)/((1 + costheta)(1 - costheta))]`

= `sintheta costheta (2/(1 - cos^2theta))`   ......[∵ (a + b)(a – b) = a2 – b2]

= `sintheta costheta xx 2/(sin^2theta)`   .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`

= `2 xx (costheta)/(sintheta)`

= 2cot θ

= R.H.S

∴ `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


(i)` (1-cos^2 theta )cosec^2theta = 1`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Find the value of sin 30° + cos 60°.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×