Advertisements
Advertisements
प्रश्न
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
उत्तर
L.H.S = `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)`
= `sintheta/(1/costheta + 1) + sintheta/(1/costheta - 1`
= `sintheta/((1 + costheta)/costheta) + sintheta/((1 - costheta)/(costheta))`
= `(sintheta costheta)/(1 + costheta) + (sintheta costheta)/(1 - costheta)`
= `sin theta costheta (1 /(1 + costheta) + 1/(1 - costheta))`
= `sintheta costheta [(1 - costheta + 1 + costheta)/((1 + costheta)(1 - costheta))]`
= `sintheta costheta (2/(1 - cos^2theta))` ......[∵ (a + b)(a – b) = a2 – b2]
= `sintheta costheta xx 2/(sin^2theta)` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= `2 xx (costheta)/(sintheta)`
= 2cot θ
= R.H.S
∴ `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
(i)` (1-cos^2 theta )cosec^2theta = 1`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Find the value of sin 30° + cos 60°.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.