Advertisements
Advertisements
प्रश्न
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
उत्तर
L.H.S = `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)`
= `sintheta/(1/costheta + 1) + sintheta/(1/costheta - 1`
= `sintheta/((1 + costheta)/costheta) + sintheta/((1 - costheta)/(costheta))`
= `(sintheta costheta)/(1 + costheta) + (sintheta costheta)/(1 - costheta)`
= `sin theta costheta (1 /(1 + costheta) + 1/(1 - costheta))`
= `sintheta costheta [(1 - costheta + 1 + costheta)/((1 + costheta)(1 - costheta))]`
= `sintheta costheta (2/(1 - cos^2theta))` ......[∵ (a + b)(a – b) = a2 – b2]
= `sintheta costheta xx 2/(sin^2theta)` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= `2 xx (costheta)/(sintheta)`
= 2cot θ
= R.H.S
∴ `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Define an identity.
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If cos θ = `24/25`, then sin θ = ?
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1