मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Choose the correct alternative: sec2θ – tan2θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

sec2θ – tan2θ =?

पर्याय

  • 0

  • 1

  • 2

  • `sqrt(2)`

MCQ

उत्तर

1

1 + tan2θ = sec2θ

∵ sec2θ – tan2θ = 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.1 (A)

संबंधित प्रश्‍न

(secA + tanA) (1 − sinA) = ______.


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×