Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
sec2θ – tan2θ =?
पर्याय
0
1
2
`sqrt(2)`
उत्तर
1
1 + tan2θ = sec2θ
∵ sec2θ – tan2θ = 1.
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ