Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
उत्तर
LHS = `sin^2A(1 - sin^2B) - (1 - sin^2A)sin^2B`
= `sin^2A - sin^2A.sin^2B - sin^2B + sin^2A.sin^2B`
= `sin^2A - sin^2B` = RHS
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Choose the correct alternative:
cos θ. sec θ = ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B