मराठी

The Value of √ 1 + Cos θ 1 − Cos θ - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]

पर्याय

  •  cot θ − cosec θ

  •  cosec θ + cot θ

  • cosec2 θ + cot2 θ

  •  (cot θ + cosec θ)2

MCQ

उत्तर

The given expression is `sqrt ((1+cosθ)/(1-cos θ))` 

Multiplying both the numerator and denominator under the root by` (1+cosθ )`, we have

`sqrt (((1+cosθ)(1+cosθ))/((1+cosθ)(1-cos θ)))` 

`=sqrt ((1+cosθ)^2/ ((1-cos^2 θ))` 

`=sqrt((1+cos θ)^2/sin^2θ` 

`=(1+cos θ)/(sinθ)` 
= `1/sinθ+cosθ/sinθ`

= `cosecθ+cotθ`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 4 | पृष्ठ ५६

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


If `sin theta = x , " write the value of cot "theta .`


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


cos4 A − sin4 A is equal to ______.


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×