Advertisements
Advertisements
प्रश्न
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
पर्याय
cot θ − cosec θ
cosec θ + cot θ
cosec2 θ + cot2 θ
(cot θ + cosec θ)2
उत्तर
The given expression is `sqrt ((1+cosθ)/(1-cos θ))`
Multiplying both the numerator and denominator under the root by` (1+cosθ )`, we have
`sqrt (((1+cosθ)(1+cosθ))/((1+cosθ)(1-cos θ)))`
`=sqrt ((1+cosθ)^2/ ((1-cos^2 θ))`
`=sqrt((1+cos θ)^2/sin^2θ`
`=(1+cos θ)/(sinθ)`
= `1/sinθ+cosθ/sinθ`
= `cosecθ+cotθ`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `sin theta = x , " write the value of cot "theta .`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
cos4 A − sin4 A is equal to ______.
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ