Advertisements
Advertisements
प्रश्न
sec4 A − sec2 A is equal to
पर्याय
tan2 A − tan4 A
tan4 A − tan2 A
tan4 A + tan2 A
tan2 A + tan4 A
उत्तर
The given expression is .`sec^4 A-sec^2A`
Taking common `sec^2 A` from both the terms, we have
`Sec^4 A-sec^2 A`
= `sec^2 A (sec^2 A-1)`
= `(1+tan^2 A)tan^2 A`
=`tan^2 A+tan^4 A`
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that cot2θ – tan2θ = cosec2θ – sec2θ