Advertisements
Advertisements
प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
उत्तर १
We have,
`=(\sec ^{2}\theta +\tan ^{2}\theta +2\sec \theta \tan\theta -1)/(\sec ^{2}\theta +\tan^{2}\theta +2\sec \theta \tan\theta +1)`
`=\frac{(\sec ^{2}\theta -1)+\tan ^{2}\theta +2\sec \theta \tan\theta }{\sec ^{2}\theta +2\sec \theta \tan \theta +(1+\tan^{2}\theta )`
`=(\tan ^{2}\theta +\tan ^{2}\theta +2\sec \theta \tan\theta )/(\sec ^{2}\theta +2\sec \theta \tan \theta +\sec^{2}\theta )`
`=\frac{2\tan ^{2}\theta +2\tan \theta \sec \theta }{2\sec^{2}\theta +2\sec \theta \tan \theta }`
`=\frac{2\tan \theta (\tan \theta +\sec \theta )}{2\sec \theta (\sec\theta +\tan \theta )}`
`=\frac{\tan \theta }{\sec \theta }=\frac{\sin \theta }{\cos \theta \sec\theta }`
= sinθ = RHS
उत्तर २
Sec θ + tan θ = P
⇒ `1/cos θ + sin θ /cos θ = P`
⇒ `(1 + sin θ)/cos θ = P`
⇒ `(1 + sin θ)^2/cos^2 θ = P^2`, ....(Squaring both sides)
⇒ `(1 + sin^2 θ + 2 sin θ)/cos^2 θ = p^2`
⇒ `(1 + sin^2 θ + 2 sin θ + cos^2 θ)/(1 + sin^2 θ + 2 sin θ - cos^2 θ) = (p^2 + 1)/(p^2 - 1)` ....(Applying componendo and dividendo]
⇒ `(1 + 1 + 2 sin θ)/(sin^2 θ + sin^2 θ + 2 sin θ) = (p^2 + 1)/(p^2 - 1)`
⇒ `(2( 1 + sin θ))/(2 sin θ( 1 + sin θ)) = (p^2 + 1)/(p^2 - 1)`
⇒ `1/sin θ = (p^2 + 1)/(p^2 - 1)`
Taking reciprocals, we get,
⇒ sin θ = `(p^2 - 1)/(p^2 + 1)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A