Advertisements
Advertisements
प्रश्न
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
उत्तर
L.H.S:
`tanA/(1 + sec A) - tanA/(1 - sec A)`
Taking LCM of the denominators,
= `(tanA(1 - sec A) - tanA(1 + sec A))/((1 + sec A)(1 - sec A))`
Since, (1 + sec A)(1 – sec A) = 1 – sec2A
= `(tan A(1 - secA - 1 - sec A))/(1 - sec^2A)`
= `(tan A(-2 sec A))/(1 - sec^2 A)`
= `(2 tan A *sec A)/(sec^2 A - 1)`
Since,
sec2A – tan2A = 1
sec2A – 1 = tan2A
= `(2 tan A * sec A)/(tan^2 A)`
Since, sec A = `(1/cosA)` and tan A = `(sinA/cosA)`
= `(2secA)/tanA = (2cosA)/(cosA sinA)`
= `2/sinA`
= 2 cosec A ...`(∵ 1/sinA = "cosec" A)`
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1