मराठी

Prove the following: tanA1+secA-tanA1-secA = 2cosec A - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A

बेरीज

उत्तर

L.H.S:

`tanA/(1 + sec A) - tanA/(1 - sec A)`

Taking LCM of the denominators,

= `(tanA(1 - sec A) - tanA(1 + sec A))/((1 + sec A)(1 - sec A))`

Since, (1 + sec A)(1 – sec A) = 1 – sec2A

= `(tan A(1 - secA - 1 - sec A))/(1 - sec^2A)`

= `(tan A(-2 sec A))/(1 - sec^2 A)`

= `(2 tan A  *sec A)/(sec^2 A - 1)`

Since,

sec2A – tan2A = 1

sec2A – 1 = tan2A

= `(2 tan A * sec A)/(tan^2 A)` 

Since, sec A = `(1/cosA)` and tan A = `(sinA/cosA)`

= `(2secA)/tanA = (2cosA)/(cosA sinA)`

= `2/sinA`

= 2 cosec A  ...`(∵ 1/sinA = "cosec" A)`

= R.H.S

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 2 | पृष्ठ ९५

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×