Advertisements
Advertisements
प्रश्न
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
पर्याय
1
\[- 1\]
\[\frac{1}{2}\]
\[\frac{1}{4}\]
उत्तर
`bb(1/2)`
Explanation:
It is given that,
\[\sin\theta - \cos\theta = 0\]
\[ \Rightarrow \sin\theta = \cos\theta\]
\[ \Rightarrow \frac{\sin\theta}{\cos\theta} = 1\]
\[ \Rightarrow \tan\theta = 1\]
\[ \Rightarrow \tan\theta = \tan45°\]
\[ \Rightarrow \theta = 45°\]
\[\therefore \sin^4 \theta + \cos^4 \theta\]
\[ = \sin^4 45° + \cos^4 45°\]
\[ = \left( \frac{1}{\sqrt{2}} \right)^4 + \left( \frac{1}{\sqrt{2}} \right)^4 \]
\[ = \frac{1}{4} + \frac{1}{4}\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
From the figure find the value of sinθ.
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
tanA+cotA=secAcosecA
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
If cos θ = `24/25`, then sin θ = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.