Advertisements
Advertisements
प्रश्न
उत्तर
𝑊𝑒 ℎ𝑎𝑣𝑒,
Sin 𝜃 = cos(𝜃 − 45°)
⟹ cos(90° − 𝜃) = cos(𝜃 − 45°)
Comparing both sides, we get
∴ 𝜃 = 67.5°
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
If 5
If
Write True' or False' and justify your answer the following :
The value of
Prove the following identity :
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that
If sec θ =
Prove that
Prove that
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that
Choose the correct alternative:
sec 60° = ?
Prove that
If sin A =
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
=
=
=
=
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ