Advertisements
Advertisements
प्रश्न
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
उत्तर
Given: `sin θ=4/5`
We know that,
`sin^2 θ+cos^2=1`
⇒ `(4/5)^2+cos^2 θ=1`
⇒ `16/25+cos^2 θ=1`
⇒ `cos^2θ=1-16/25`
⇒`cos^2θ=9/25`
⇒`cosθ=3/5`
We have,
`cos θ+cosec θ=cosθ/sin θ+1/sinθ`
= `(3/5)/(4/5)+1/(4/5)`
= `3/4+5/4`
= `2`
Hence, the value of cotθ + cosecθ is 2.
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of cos1° cos 2°........cos180° .
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
tan θ × `sqrt(1 - sin^2 θ)` is equal to: