рдорд░рд╛рдареА

`Cot Theta/((Cosec Theta + 1) )+ ((Cosec Theta +1 ))/ Cot Theta = 2 Sec Theta ` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `

рдЙрддреНрддрд░

LHS = `cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta `

      =`( cot ^2 theta + (cosec  theta + 1 ) ^2 ) / ((cosec  theta +1) cot theta)`

      =` ( cot ^2 + cosec ^2 theta + 2 cosec  theta +1 )/( (cosec  theta +1) cot theta)`

      =`( cot ^2  theta + cosec ^2  theta +2cosec  theta + cosec ^2  theta - cot^2 theta)/((cosec theta +1 ) cot theta)`

      =` (2 cosec^2  theta + 2 cosec  theta)/(( cosec  theta +1 ) cot theta)` 

      =`(2 cosec  theta ( cosec  theta +1))/(( cosec  theta +1 ) cot theta)`

      =` (2 cosec  theta)/(cot theta)`

      =`2 xx 1/sin  theta xx sin theta/ cos theta`

      = 2 sec ЁЭЬГ
       = RHS
Hence, LHS = RHS

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 1

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Find A if tan 2A = cot (A-24°).


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×