Advertisements
Advertisements
рдкреНрд░рд╢реНрди
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
рдЙрддреНрддрд░
LHS = `cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta `
=`( cot ^2 theta + (cosec theta + 1 ) ^2 ) / ((cosec theta +1) cot theta)`
=` ( cot ^2 + cosec ^2 theta + 2 cosec theta +1 )/( (cosec theta +1) cot theta)`
=`( cot ^2 theta + cosec ^2 theta +2cosec theta + cosec ^2 theta - cot^2 theta)/((cosec theta +1 ) cot theta)`
=` (2 cosec^2 theta + 2 cosec theta)/(( cosec theta +1 ) cot theta)`
=`(2 cosec theta ( cosec theta +1))/(( cosec theta +1 ) cot theta)`
=` (2 cosec theta)/(cot theta)`
=`2 xx 1/sin theta xx sin theta/ cos theta`
= 2 sec ЁЭЬГ
= RHS
Hence, LHS = RHS
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Find A if tan 2A = cot (A-24°).
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
tan θ × `sqrt(1 - sin^2 θ)` is equal to: