Advertisements
Advertisements
प्रश्न
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
उत्तर
sec4 A (1 – sin4 A) – 2 tan2 A
= sec4 A – sec4 A sin4 A – 2 tan2 A
= `(sec^2A)^2 - 1/(cos^4A)sin^4A - 2tan^2A`
= (1 + tan2 A)2 – tan4 A – 2 tan2 A ...`[(sec^2A - tan^2A = 1), (sec^2A = 1 + tan^2A)]`
= (1)2 + (tan2 A)2 – 2 × 1 × tan2 A – tan4 A – 2 tan2 A
= 1 + tan4 A + 2 tan2 A – tan4 A – 2 tan2 A
= 1
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.