Advertisements
Advertisements
Question
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Solution
sec4 A (1 – sin4 A) – 2 tan2 A
= sec4 A – sec4 A sin4 A – 2 tan2 A
= `(sec^2A)^2 - 1/(cos^4A)sin^4A - 2tan^2A`
= (1 + tan2 A)2 – tan4 A – 2 tan2 A ...`[(sec^2A - tan^2A = 1), (sec^2A = 1 + tan^2A)]`
= (1)2 + (tan2 A)2 – 2 × 1 × tan2 A – tan4 A – 2 tan2 A
= 1 + tan4 A + 2 tan2 A – tan4 A – 2 tan2 A
= 1
APPEARS IN
RELATED QUESTIONS
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α