English

Prove the following identities: (1-2sin2A)2cos4A-sin4A=2cos2A-1 - Mathematics

Advertisements
Advertisements

Question

Prove the following identities:

(1-2sin2A)2cos4A-sin4A=2cos2A-1

Sum

Solution

L.H.S. (1-2sin2A)2cos4A-sin4A

= (1-2sin2A)2(cos2A)2-(sin2A)2

= (1-2sin2A)2(cos2A+sin2A)(cos2A-sin2A)  

= (1-2sin2A)2(1)(1-sin2A-sin2A)   ...[∵ cos2 A = 1 – sin2 A]

= (1-2sin2A)2(1-2sin2A)

= 1 – 2 sin2 A

= 1 – 2 (1 – cos2 A) 

= 1 – 2 + 2 cos2 A

= 2 cos2 A – 1 = R.H.S.

Hence the result is proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (E) [Page 332]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (E) | Q 1.14 | Page 332
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.