Advertisements
Advertisements
Question
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Solution
cosec A – cot A
= `1/sinA - cosA/sinA`
= `(1 - cosA)/sinA`
= `(1 - cosA)/sinA xx (1 + cosA)/(1 + cosA)`
= `(1 - cos^2A)/(sinA(1 + cosA)`
= `sin^2A/(sinA(1 + cosA))`
= `sinA/(1 + cosA)`
APPEARS IN
RELATED QUESTIONS
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Write the value of cosec2 (90° − θ) − tan2 θ.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.