Advertisements
Advertisements
Question
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Solution
`1-sin^2A/(1 + cosA)`
= `(1 + cosA - sin^2A)/(1 + cosA)`
= `(cosA + cos^2A)/(1 + cosA)`
= `(cosA(1 + cosA))/(1 + cosA)`
= cos A
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of tan1° tan 2° ........ tan 89° .
The value of sin2 29° + sin2 61° is
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.