Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
उत्तर
`1-sin^2A/(1 + cosA)`
= `(1 + cosA - sin^2A)/(1 + cosA)`
= `(cosA + cos^2A)/(1 + cosA)`
= `(cosA(1 + cosA))/(1 + cosA)`
= cos A
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Choose the correct alternative:
Which is not correct formula?
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ