Advertisements
Advertisements
प्रश्न
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
उत्तर
We have tanA = n tan B
⇒ `cot B = n/tanA ........(i)`
Again , sin A = m sin B
` ⇒ cosec B = m/ sin A ........(ii) `
Squaring (i) and ( ii) and subtracting (ii) from (i) , We get
`⇒ (m^2)/(sin^2 A) - (n^2 )/(tan^2 A) = cosec ^2 B - cot^2 B`
`⇒ (m^2 )/(sin^2 A )-(n^2 cos )/(sin^2 A)m=1`
`⇒m^2 - n^2 cos^2 A = sin^2 A`
`⇒ m^2 - n^2 cos^2 A =1- cos^2 A`
`⇒ n^2 cos^2 A- cos^2 A = m^2 -1`
`⇒cos^2 A (n^2 -1) = (m^2 -1)`
`⇒ cos^2 A = ((m^2 -1))/((n^2 -1))`
∴` cos^2 A = ((m^2 -1))/((n^2 -1))`
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
(1 + sin A)(1 – sin A) is equal to ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.