मराठी

If Tan a = N Tan B and Sin a = M Sin B , Prove That `Cos^2 a = ((M^2-1))/((N^2 - 1))` - Mathematics

Advertisements
Advertisements

प्रश्न

If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`

उत्तर

We have tanA = n tan B     

⇒ `cot B = n/tanA   ........(i)`

Again , sin A = m sin B 

` ⇒ cosec B = m/ sin A  ........(ii) `

Squaring (i) and ( ii) and subtracting (ii) from (i) , We get 

`⇒ (m^2)/(sin^2 A) - (n^2 )/(tan^2 A) = cosec ^2 B - cot^2 B`

`⇒ (m^2 )/(sin^2 A )-(n^2 cos )/(sin^2 A)m=1`

`⇒m^2 - n^2 cos^2 A = sin^2 A`
`⇒ m^2 - n^2 cos^2  A =1- cos^2 A`

`⇒ n^2 cos^2 A- cos^2 A = m^2 -1`

`⇒cos^2 A (n^2 -1) = (m^2 -1)`

`⇒ cos^2 A = ((m^2 -1))/((n^2 -1))`

∴` cos^2 A = ((m^2 -1))/((n^2 -1))`

                                                                                                                                     

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 14

संबंधित प्रश्‍न

Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

sec2θ – tan2θ =?


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×