Advertisements
Advertisements
प्रश्न
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
उत्तर
We have tanA = n tan B
⇒ `cot B = n/tanA ........(i)`
Again , sin A = m sin B
` ⇒ cosec B = m/ sin A ........(ii) `
Squaring (i) and ( ii) and subtracting (ii) from (i) , We get
`⇒ (m^2)/(sin^2 A) - (n^2 )/(tan^2 A) = cosec ^2 B - cot^2 B`
`⇒ (m^2 )/(sin^2 A )-(n^2 cos )/(sin^2 A)m=1`
`⇒m^2 - n^2 cos^2 A = sin^2 A`
`⇒ m^2 - n^2 cos^2 A =1- cos^2 A`
`⇒ n^2 cos^2 A- cos^2 A = m^2 -1`
`⇒cos^2 A (n^2 -1) = (m^2 -1)`
`⇒ cos^2 A = ((m^2 -1))/((n^2 -1))`
∴` cos^2 A = ((m^2 -1))/((n^2 -1))`
APPEARS IN
संबंधित प्रश्न
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
sec2θ – tan2θ =?
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.