Advertisements
Advertisements
प्रश्न
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
उत्तर
LHS: `((sin^3θ)/(cos^3θ))/((1 + sin^2θ)/(cos^2θ)) + ((cos^3θ)/(sin^3θ))/((1 + cos^2θ)/(sin^2θ))`
= `((sin^3θ)/(cos^3θ))/(((cos^2θ + sin^2θ))/cos^2θ) + ((cos^3θ)/(sin^3θ))/(((sin^2θ + cos^2θ))/sin^2θ)`
= `sin^3θ/cosθ + cos^3θ/sinθ`
= `(sin^4θ + cos^4θ)/(cosθsinθ)`
= `((sin^2θ + cos^2θ)^2 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`
= `(1 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`
= `1/(cos θ sinθ) - (2 sin^2θcos^2θ)/(cosθ sinθ)`
= secθ cosec θ – 2 sinθ cosθ
= RHS
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Write the value of tan1° tan 2° ........ tan 89° .
If `sec theta + tan theta = x," find the value of " sec theta`
\[\frac{x^2 - 1}{2x}\] is equal to
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.