मराठी

Prove the following that: θθθθtan3θ1+tan2θ+cot3θ1+cot2θ = secθ cosecθ – 2 sinθ cosθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ

बेरीज

उत्तर

LHS: `((sin^3θ)/(cos^3θ))/((1  +  sin^2θ)/(cos^2θ)) + ((cos^3θ)/(sin^3θ))/((1  +  cos^2θ)/(sin^2θ))`

= `((sin^3θ)/(cos^3θ))/(((cos^2θ + sin^2θ))/cos^2θ) + ((cos^3θ)/(sin^3θ))/(((sin^2θ + cos^2θ))/sin^2θ)`

= `sin^3θ/cosθ + cos^3θ/sinθ`

= `(sin^4θ + cos^4θ)/(cosθsinθ)`

= `((sin^2θ + cos^2θ)^2 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`

= `(1 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`

= `1/(cos θ sinθ) - (2 sin^2θcos^2θ)/(cosθ sinθ)`

= secθ cosec θ – 2 sinθ cosθ

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Standard Sample

संबंधित प्रश्‍न

Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


Write the value of tan1° tan 2°   ........ tan 89° .


If `sec theta + tan theta = x,"  find the value of " sec theta`


\[\frac{x^2 - 1}{2x}\] is equal to 


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×