Advertisements
Advertisements
प्रश्न
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
उत्तर
LHS = 2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1
Simplifying the expression 2(sin6θ + cos6θ) - 3(sin4θ + cos4) we have,
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ)
= 2sin6θ + 2cos6θ - 3sin4θ - 3cos4θ
= (2sin6θ - 3sin4θ) + (2cos6θ - 3cos4θ)
= sin4θ(2sin2θ - 3) + cos4θ(2cos2θ - 3)
= sin4θ{2( 1 - cos2θ) - 3} + cos4θ{ 2( 1 - sin2θ) - 3}
= sin4θ( 2 - 2cos2θ - 3) + cos4θ( 2 - 2sin2θ - 3)
= sin4θ( -1 - 2cos2θ) + cos4θ( - 1 - 2sin2θ)
= - sin4θ - 2sin4θcos2θ - cos4θ - 2cos4θsin2θ
= - sin4θ - cos4θ - 2cos4θsin2θ - 2sin4θcos2θ
= - sin4θ - cos4θ - 2cos2θsin2θ( cos2θ + sin2θ )
= - sin4θ - cos4θ - 2cos2θsin2θ(1)
= - sin4θ - cos4θ - 2cos2θsin2θ
= - (sin4θ + cos4θ + 2cos2θsin2θ)
= - {(sin2θ)2 + (cos2θ)2 + 2sin2θcos2θ }
= - (sin2θ + cos2θ)2
= - (1)2
= - 1
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1 = −1 + 1 = 0 = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.