Advertisements
Advertisements
प्रश्न
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
उत्तर
L.H.S = `(sintheta + tantheta)/cos theta`
= `sintheta/costheta + tantheta/costheta`
= tan θ + tan θ sec θ
= tan θ(1 + sec θ)
= R.H.S
∴ `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
APPEARS IN
संबंधित प्रश्न
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
`sin^2 theta + 1/((1+tan^2 theta))=1`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`