Advertisements
Advertisements
प्रश्न
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
उत्तर
Given: `cos A=7/25`
We know that,
`sin^2 A+cos^2 A=1`
⇒` sin^2 A+(7/25)^2=1`
⇒` sin^2 A+49/625=1`
⇒` sin^2 A1-49/625`
⇒ `sin^2A=576/625`
⇒ `sin A=24/25`
Therefore,
`tan A+cot A= sin A/cos A+cos A/sin A`
=` (24/25)/(7/25)+1=(7/25)/(24/25)`
= `24/7+7/24`
=`((24)^2+(7)^2)/168`
=`(576+49)/168`
=`625/168`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Find the value of sin 30° + cos 60°.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.