Advertisements
Advertisements
प्रश्न
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
उत्तर
L.H.S. = `tanA/(1 - cotA) + cotA/(1 - tanA)`
= `tanA/(1 - 1/tanA) + (1/tanA)/(1 - tanA)`
= `tan^2A/(tanA - 1) + 1/(tanA(1 - tanA))`
= `(tan^3A - 1)/(tanA(1 - tanA))`
= `((tanA - 1)(tan^2A + 1 + tanA))/(tanA(tanA - 1)`
= `(sec^2A + tanA)/tanA`
= `(1/cos^2A)/(sinA/cosA) + 1`
= `1/(sinAcosA) + 1`
= sec A cosec A + 1 = R.H.S.
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Choose the correct alternative:
1 + tan2 θ = ?
Eliminate θ if x = r cosθ and y = r sinθ.