Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
उत्तर
L.H.S. = `1/(tan A + cot A)`
= `1/((sin A)/(cos A) + (cos A)/(sin A))`
= `1/((sin^2A + cos^2A)/(sin A cos A))`
= `1/(1/(sin A cos A))` ...(∵ sin2A + cos2A = 1)
= sin A cos A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If tanθ `= 3/4` then find the value of secθ.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.