Advertisements
Advertisements
प्रश्न
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
उत्तर
L.H.S. = tan A – cot A
= `(sin A)/(cos A) - (cos A)/(sin A)`
= `(sin^2A - cos^2A)/(sin A cos A)`
= `(1 - cos^2A - cos^2A)/(sin A cos A)` ...(∵ sin2A = 1 – cos2A)
= `(1 - 2cos^2A)/(sin A cos A)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of cos1° cos 2°........cos180° .
From the figure find the value of sinθ.
If tanθ `= 3/4` then find the value of secθ.
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Choose the correct alternative:
Which is not correct formula?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`