मराठी

Write the Value of Cos1° Cos 2°........Cos180° . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of cos1° cos 2°........cos180° .

उत्तर

Cos 1°  cos 2°  … cos 180°
= cos 1° cos 2° … cos 90° … cos 180°
= cos 1° cos 2° … 0 … cos 180°
= 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 3

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 3 | Q 29

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Simplify : 2 sin30 + 3 tan45.


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


(sec θ + tan θ) . (sec θ – tan θ) = ?


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×