मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prove that: tan AtanACot ACotAsin A cos Atan A(1+tan2A)2+Cot A(1+Cot2A)2=sin A cos A. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.

बेरीज

उत्तर

`"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2 = "sin A cos A"`.

LHS = `"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2`

LHS =  `"tan A"/("sec"^2 "A")^2 + "cot A"/("cosec"^2 "A")^2         ...{( 1 + "tan"^2θ = "sec"^2θ),(1 + "cot"^2θ = "cosec"^2θ):}`

LHS = `"tan A" × 1/("sec"^2 "A")^2 + "cot A" × 1/("cosec"^2 "A")^2`

LHS = `"sin A"/"cos A" × "cos"^4 "A" + "cos A"/"sin A" × "sin"^4 "A"   ...{(cosθ = 1/sec θ),(sin θ = 1/"cosecθ"):}`

LHS = sinA cos3A + cosA sin3A

LHS = sinA cosA (cos2A  + sin2A)

LHS = sinA cosA.(1)                ...(cos2A  + sin2A = 1)

LHS = sinA cosA

RHS = sinA cosA

LHS = RHS

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 6 Trigonometry
Practice Set 6.1 | Q 6.10 | पृष्ठ १३१

संबंधित प्रश्‍न

If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


`(sec^2 theta-1) cot ^2 theta=1`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If `secθ = 25/7 ` then find tanθ.


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


Find the value of sin 30° + cos 60°.


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×