Advertisements
Advertisements
प्रश्न
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
उत्तर
`"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2 = "sin A cos A"`.
LHS = `"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2`
LHS = `"tan A"/("sec"^2 "A")^2 + "cot A"/("cosec"^2 "A")^2 ...{( 1 + "tan"^2θ = "sec"^2θ),(1 + "cot"^2θ = "cosec"^2θ):}`
LHS = `"tan A" × 1/("sec"^2 "A")^2 + "cot A" × 1/("cosec"^2 "A")^2`
LHS = `"sin A"/"cos A" × "cos"^4 "A" + "cos A"/"sin A" × "sin"^4 "A" ...{(cosθ = 1/sec θ),(sin θ = 1/"cosecθ"):}`
LHS = sinA cos3A + cosA sin3A
LHS = sinA cosA (cos2A + sin2A)
LHS = sinA cosA.(1) ...(cos2A + sin2A = 1)
LHS = sinA cosA
RHS = sinA cosA
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
`(sec^2 theta-1) cot ^2 theta=1`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If `secθ = 25/7 ` then find tanθ.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Find the value of sin 30° + cos 60°.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.