Advertisements
Advertisements
प्रश्न
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
उत्तर
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(cos^2θ + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ sin2θ cos2θ = 1
= `1/sinθ xx 1/cosθ`
= cosecθ × secθ
∴ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`sec theta (1- sin theta )( sec theta + tan theta )=1`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If tan α + cot α = 2, then tan20α + cot20α = ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
If tan θ = `x/y`, then cos θ is equal to ______.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`