मराठी

`Sec Theta (1- Sin Theta )( Sec Theta + Tan Theta )=1` - Mathematics

Advertisements
Advertisements

प्रश्न

`sec theta (1- sin theta )( sec theta + tan theta )=1`

उत्तर

LHS = `sec theta ( 1- sin theta )(sec theta + tan theta)`

       =` (sec theta - sec theta sin theta) ( sec theta + tan theta)`

       =` (sec theta - 1/(cos theta) xx sin theta )(sec theta+tantheta)`

       =` (sec theta - tan theta ) ( sec theta + tan theta)`

      = `sec ^2 theta - tan ^2 theta`

     =  1

     = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 7.1

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove that:

tan (55° + x) = cot (35° – x)


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


If cos A + cos2A = 1, then sin2A + sin4 A = ?


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×