Advertisements
Advertisements
प्रश्न
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
उत्तर
Given:
`sin ^2θ cos^2 θ(1+tan^2 θ)(1+cot ^2θ)=λ`
`⇒ sin^2θ cos^2 θ sec^2 θ cosec^2θ=λ`
⇒`(sin^2 θ cosec^2θ )xx (cos^2θ sec^2 θ)= λ`
⇒ `(sin^2θ xx 1/sin^2θ )(cos^2 θxx1/cos^2θ)=λ`
\[\Rightarrow \lambda = 1 \times 1 = 1\]
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Choose the correct alternative:
1 + cot2θ = ?
Choose the correct alternative:
sin θ = `1/2`, then θ = ?