Advertisements
Advertisements
प्रश्न
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
उत्तर
Given:
sin A + cos A = m and sec A + cosec A = n
Consider L.H.S = n (m2 – 1)
= `(secA + cosecA)[(sinA + cosA)^2 - 1]`
= `(1/cosA + 1/sinA)[sin^2A + cos^2A + 2sinAcosA - 1]`
= `((cosA + sinA)/(sinAcosA))(1 + 2sinAcosA - 1)`
= `((cosA + sinA))/(sinAcosA)(2sinAcosA)`
= 2(sin A + cos A)
= 2 m = R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If 2sin2β − cos2β = 2, then β is ______.