Advertisements
Advertisements
प्रश्न
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
उत्तर
LHS = mn
`= (cosec theta + cot theta) (cosec theta - cot theta)`
`= cosece^2 theta - cot^2 theta`
= 1 [∵ `(1 + b)(a - b) = a^2 - b^2 cosec^2 theta - cot^2 theta = 1`]
=RHS
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Choose the correct alternative:
cos 45° = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ