Advertisements
Advertisements
प्रश्न
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
उत्तर
LHS = `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ`
= `(sin^4θ + cos^4θ)/(sin^2θ.cos^2θ)`
= `((sin^2 θ + cos^2 θ)^2 - 2(sin^2 θ. cos^2 θ))/(sin^2 θ.cos^2 θ)`
= `((1)^2 - 2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`
= `1/(sin^2 θ.cos^2 θ) - (2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`
= `1/(sin^2 θ.cos^2 θ) - 2`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.