Advertisements
Advertisements
प्रश्न
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
उत्तर
L.H.S = tan 7° × tan 23° × tan 60° × tan 67° × tan 83°
= tan 7° × tan 23° × `sqrt(3)` × tan(90° – 23°) × tan(90° – 7°)
= `sqrt(3)` × [tan 7° × tan(90° – 7°)] × [tan 23° × tan(90° – 23°)]
= `sqrt(3) xx 1 xx 1` ......[∵ tan θ × tan(90° – θ) = 1]
= `sqrt(3)`
= R.H.S
∴ tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
cos4 A − sin4 A is equal to ______.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If sin θ = `1/2`, then find the value of θ.
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`