मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = 3 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`

बेरीज

उत्तर

L.H.S = tan 7° × tan 23° × tan 60° × tan 67° × tan 83°

= tan 7° × tan 23° × `sqrt(3)` × tan(90° – 23°) × tan(90° – 7°)

= `sqrt(3)` × [tan 7° × tan(90° – 7°)] × [tan 23° × tan(90° – 23°)]

= `sqrt(3) xx 1 xx 1`    ......[∵ tan θ × tan(90° – θ) = 1]

= `sqrt(3)`

= R.H.S

∴ tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.5

संबंधित प्रश्‍न

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


cos4 A − sin4 A is equal to ______.


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


If sin θ = `1/2`, then find the value of θ. 


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×