मराठी

A Moving Boat is Observed from the Top of a 150 M High Cliff Moving Away from the Cliff. the Angle of Depression of the Boat Changes from 60° to 45° in 2 Minutes. Find the Speed of the Boat in M/Min. - Mathematics

Advertisements
Advertisements

प्रश्न

A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.

बेरीज

उत्तर


Let AO be the cliff of height 150 m.
Let the speed of the boat be x meters per minute.
And BC is the distance which man travelled.

So, BC = 2x         ....[ ∵Distance = Speed x Time ]

tan(60°) = `"AO"/"OB"`

`sqrt3` = `150/"OB"`

⇒ OB = `(150sqrt3)/3` = `50sqrt3`

tan(45°) = `"AO"/"OC"`

⇒1 = `150/"OC"`

⇒ OC = 150
Now OC = OB + BC

⇒ 150 = `50sqrt3` + 2x

⇒ x = `(150 − 50sqrt3)/2`

⇒ x = 75 − `25sqrt3`

Using `sqrt3 = 1.73`
x = 75 − 25 x 1.732 ≈ 32 m/min 
Hence, the speed of the boat is 32 metres per minute.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 30/4/3

संबंधित प्रश्‍न

(secA + tanA) (1 − sinA) = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×