Advertisements
Advertisements
प्रश्न
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
उत्तर
L.H.S. = sin2 θ + cos4 θ
= 1 - cos2 θ + cos4 θ
= 1 - cos2 θ (1 - cos2 θ)
= 1 - (1 - sin2 θ) sin2 θ
= 1 - sin2 θ + sin4 θ
= cos2 θ + sin4 θ
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If 2sin2θ – cos2θ = 2, then find the value of θ.