Advertisements
Advertisements
प्रश्न
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
उत्तर
tan θ – sin2θ = cos2θ ......[Given]
∴ tan θ = sin2θ + cos2θ
∴ tan θ = 1 ....[∵ sin2θ + cos2θ = 1]
But, tan 45° = 1
∴ tan θ = tan 45°
∴ θ = 45°
sin2θ = sin245°
= `(1/sqrt(2))^2`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If tanθ `= 3/4` then find the value of secθ.
cos4 A − sin4 A is equal to ______.
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.