Advertisements
Advertisements
प्रश्न
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
पर्याय
\[\frac{z^2}{c^2}\]
\[1 - \frac{z^2}{c^2}\]
\[\frac{z^2}{c^2} - 1\]
\[1 + \frac{z^2}{c^2}\]
उत्तर
Given:
`x= a secθcosΦ`
`⇒ x/a=secθ cosΦ `
`y=b sec θ sinΦ `
`⇒ y/b=secθ sinΦ `
`z=c tan θ`
`z/c= tan θ`
Now,
`(x/a)^2+(y/b)^2-(z/c)^2=(secθ cosΦ)^2+(secθ sin Φ)^2-(tanθ )^2`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θcos^2 Φ+sec^2θsin^2Φ-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=(sec^2θ cos^2Φ+sec^2θ sin^2 sin^2Φ)-tan^2Φ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ(cos^2Φ+sin^2Φ)-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θ(1)-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=1`
`⇒x^2/a^2+y^2/b^2=1+z^2/c^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.