Advertisements
Advertisements
प्रश्न
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
उत्तर
L.H.S = `(cos^2theta)/(sintheta) + sintheta`
= `(cos^2theta + sin^2theta)/sintheta`
= `1/sintheta` .......[∵ sin2θ + cos2θ = 1]
= cosec θ
= R.H.S
∴ `(cos^2theta)/(sintheta) + sintheta` = cosec θ
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If `secθ = 25/7 ` then find tanθ.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Find A if tan 2A = cot (A-24°).
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`