English

Prove that cos2θsinθ+sinθ = cosec θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ

Sum

Solution

L.H.S = `(cos^2theta)/(sintheta) + sintheta` 

= `(cos^2theta + sin^2theta)/sintheta`

= `1/sintheta`   .......[∵ sin2θ + cos2θ = 1]

= cosec θ

= R.H.S

∴ `(cos^2theta)/(sintheta) + sintheta` = cosec θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.2 (B)

APPEARS IN

RELATED QUESTIONS

If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


If `sec theta = x ,"write the value of tan"  theta`.


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×