Advertisements
Advertisements
Question
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Solution
LHS = `1/((cosA + sinA) - 1) + 1/((cosA + sinA) + 1)`
= `(cosA + sinA + 1 + cosA + sinA - 1)/((cosA + sinA)^2 -1)`
= `(2(cosA + sinA))/(cos^2A + sin^2A + 2cosAsinA - 1)`
= `(2(cosA + sinA))/(1 + 2cosAsinA - 1) = (cosA + sinA)/(cosAsinA)`
= `cosA/(cosAsinA) + sinA/(cosAsinA)`
= `1/sinA + 1/cosA`
= cosecA + secA
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.