Advertisements
Advertisements
Question
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Solution
LHS = `(sinA + sinB)/(cosA + cosB) + (cosA - cosB)/(sinA - sinB) `
= `((sinA + sinB)(sinA - sinB) + (cosA + cosB)(cosA - cosB))/((cosA + cosB)(sinA - sinB))`
= `(sin^2A - sin^2B + cos^2A - cos^2B)/((cosA + cosB)(sinA - sinB))`
= `((sin^2A + cos^2A) - (sin^2B + cos^2B))/((cosA + cosB)(sinA - sinB)`
= `(1-1)/((cosA + cosB)(sinA - sinB))`
= `0/((cosA + cosB)(sinA - sinB))`
= 0
`(sinA + sinB)/(cosA + cosB) + (cosA - cosB)/(sinA - sinB) = 0`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A